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Abstract. It is known that a higher order tensor does not necessarily have an optimal low rank
approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD).
We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize
the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD). In face of these
difficulties to generalize standard results known in the matrix case to tensors, we consider the low
rank orthogonal approximation of tensors. The existence of an optimal approximation is theoretically
guaranteed under certain conditions, and this optimal approximation yields a tensor decomposition
where the diagonal of the core is maximized. We present an algorithm to compute this approximation
and analyze its convergence behavior. Numerical experiments indicate a linear convergence rate for
this algorithm.
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1. Introduction. There has been renewed interest in studying the properties
and decompositions of tensors (also known as N -way arrays or multidimensional ar-
rays) in numerical linear algebra in recent years [30, 13, 12, 43, 17, 9, 28, 29, 15, 11].
The tensor approximation techniques have been fruitfully applied in various areas
which include among others, chemometrics [38, 4], signal processing [10, 8], vision
and graphics [41, 42], and network analysis [31, 1]. From the point of view of practi-
cal applications, the matrix SVD and the optimal rank-r approximation of matrices
(a.k.a. Eckart-Young theorem [18]) are of particular interest, and it would be nice if
these properties could be directly generalized to higher order tensors. However, for
any order N ≥ 3, de Silva and Lim [17] showed that the problem of optimal low rank
approximation of higher order tensors is ill-posed for many ranks r, and that this
ill-posedness is not rare for order-3 tensors. Furthermore, Kolda presented numerous
examples to illustrate the difficulties of orthogonal tensor decompositions [28, 29].
These studies revealed many aspects of the dissimilarities between tensors and matri-
ces, in spite of the fact that higher order tensors are multidimensional generalizations
of matrices.

The most commonly used generalization of the matrix SVD to higher order ten-
sors to date is the Higher Order Singular Value Decomposition (HOSVD) [12]. The
HOSVD decomposes an order-N tensor into a core tensor that has the same size
as the original tensor together with N orthogonal1 side-matrices. Although this de-
composition preserves many nice aspects of the matrix SVD (e.g., the core has the
all-orthogonality property and the ordering property), a notable difference is that the
core is in general not diagonal. Hence, in contrast with the matrix SVD, the HOSVD
cannot be written as a sum of a few orthogonal outer-product terms2.
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1Throughout this paper, a matrix A ∈ Rm×n, m ≥ n, is said to be orthogonal if AT A = I. This
generalizes the definition for square matrices.

2For discussions of orthogonality, see Section 2.4.
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There exist three well-known approximations to higher order tensors: (1) the
rank-1 approximation [13, 43, 27]; (2) the rank-(r1, r2, . . . , rN ) approximation with a
full core and N orthogonal side-matrices (in the Tucker/HOOI fashion) [40, 13]; and
(3) the approximation using r outer-product terms (in the CANDECOMP/PARAFAC
fashion) [6, 19]. Note that the approximated tensor in case (3) might have rank less
than r. Among these approximations, the rank-1 approximation [17] and the rank-
(r1, r2, . . . , rN ) approximation are theoretically guaranteed to have a global optimum.
In practical applications, the three approximations are generally computed using an
alternating least squares (ALS) method [33, 3, 25] (the so-called “workhorse” algo-
rithm [30]), although many other methods have also been proposed [34, 37, 43, 28, 15,
11]. The convergence behavior of the ALS method is theoretically unknown except
under a few strong conditions [32]. Besides, it has long been observed that the ALS
method for the PARAFAC model may converge extremely slowly if at all [36, 26]. An
illustration of this phenomenon is given in the Appendix.

Kolda [28] investigated several orthogonal decompositions of tensors related to
different definitions of orthogonality, including orthogonal rank decomposition, com-
plete orthogonal rank decomposition and strong orthogonal rank decomposition. These
decompositions might not be unique, or even exist. Among these definitions, only the
complete orthogonality gives a situation which parallels that of the matrix SVD. This
approach demands that the side-matrices all be orthogonal, in which case we use the
term tensor singular value decomposition (tensor SVD, see Definition 4.1) in this pa-
per. Zhang and Golub [43] proved that for all tensors of order N ≥ 3, the tensor SVD
is unique (up to signs) if it exists, and that the incremental rank-1 approximation
approach will compute this decomposition.

The following contributions are made in this paper:
1. Sufficient conditions indicating which tensors fail to have a tensor SVD are

given. These conditions are related to the rank, the order, and the dimensions of
the tensor, and hence can be viewed as generalizations of results given in the liter-
ature with specific examples. Furthermore, the existence of the tensor SVD can be
characterized by the diagonality of the core in the HOSVD of the tensor.

2. A form of low rank approximations—one that requires a diagonal core and
orthogonal side-matrices—is discussed. Theoretically the global optimum of this ap-
proximation can be attained for any (appropriate) rank. We present an iterative
algorithm to compute this approximation and analyze its convergence behavior.

3. The proposed approximation at the maximally possible rank leads to a de-
composition of the tensor, where the diagonal of the core is maximized. This “maximal
diagonality” for symmetric order-3 [14] and 4 [7] tensors and for general order-3 ten-
sors [15, 24, 35] has been previously investigated and Jacobi algorithms were used in
the cited papers, but our discussion is in a more general context and the proposed
algorithm is not of a Jacobi type.

2. Tensor algebra. In this section, we briefly review some concepts and notions
that are used throughout the paper. A tensor is a multidimensional array of data
whose elements are referred by using multiple indices. The number of indices required
is called the order of a tensor. We use

A = (ai1,i2,...,iN
) ∈ Rd1×d2×···×dN

to denote a tensor A of order N . For n = 1, 2, . . . , N , dn is the n-th dimension of A.
As a special case, a vector is an order-1 tensor and a matrix is an order-2 tensor.
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2.1. Unfoldings and mode-n products. It is hard to visualize tensors of order
N > 3. They can be flexibly represented when “unfolded” into matrices. The unfold-
ing of a tensor along mode n is a matrix of dimension dn × (dn+1 · · · dNd1 · · · dn−1).
We denote the mode-n unfolding of tensor A by A(n). Each column of A(n) is a
column of A along the n-th mode.

An important operation for a tensor is the tensor-matrix multiplication, also
known as mode-n product. Given a tensor A ∈ Rd1×d2×···×dN and a matrix M ∈
Rcn×dn , the mode-n product is a tensor

B = A×n M ∈ Rd1×···×dn−1×cn×dn+1···×dN

where

bi1,...,in−1,jn,in+1,...,iN
:=

dn∑

in=1

ai1,...,in−1,in,in+1,...,iN
mjn,in

for jn = 1, 2, . . . , cn. In matrix representation, this is

B(n) = MA(n). (2.1)

2.2. Inner products and tensor norms. The inner product of two tensors A
and B of the same size is defined by

〈A,B〉F :=
dN∑

iN=1

· · ·
d1∑

i1=1

ai1,...,iN
bi1,...,iN

.

and the norm induced from this inner product is

‖A‖F :=
√
〈A,A〉F .

We say that A is a unit tensor if ‖A‖F = 1. When N = 2, ‖A‖F is the Frobenius norm
of matrix A. The norm of a tensor is equal to the Frobenius norm of the unfolding of
the tensor along any mode:

‖A‖F =
∥∥A(n)

∥∥
F

, for n = 1, . . . , N.

2.3. Tensor products and outer products of vectors. The tensor product
of an order-N tensor A ∈ Rd1×d2×···×dN and an order-N ′ tensor B ∈ Rc1×c2×···×cN′ is
an order-(N + N ′) tensor

C = A⊗ B ∈ Rd1×···×dN×c1×···×cN′ ,

where

ci1,...,iN ,j1,...,jN′ := ai1,...,iN
bj1,...,jN′ .

Note that the operator ⊗ for tensor products unfortunately coincides with the one
used to denote the Kronecker product of two matrices. In particular, the tensor
product of two matrices (order-2 tensors) is an order-4 tensor, while the Kronecker
product of two matrices is again a matrix. The reader shall not be confused by this
notation since in this paper Kronecker products are not involved.
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The outer product of N (column) vectors, which generalizes the standard outer
product of two vectors (a rank-1 matrix), is a special case of tensor products. The
outer product of N vectors x(n) ∈ Rdn , is an order-N tensor of dimension d1 × d2 ×
· · · × dN :

X = x(1) ⊗ x(2) ⊗ · · · ⊗ x(N).

The (i1, i2, . . . , iN )-entry of X is
∏N

n=1(x
(n))in , where (x(n))in denotes the in-th entry

of vector x(n). The tensor X is also called a rank-1 tensor. The rank of a tensor is
defined in Section 3.

It can be verified that the mode-n product of a rank-1 tensor X with a matrix M
can be computed as follows:

X ×n M = x(1) ⊗ · · · ⊗ x(n−1) ⊗
(
Mx(n)

)
⊗ x(n+1) · · · ⊗ x(N),

and that the inner product of X with a general tensor A is

〈A,X〉F =
〈
A, x(1) ⊗ x(2) ⊗ · · · ⊗ x(N)

〉
F

= A×1 x(1)T ×2 x(2)T × · · · ×N x(N)T
.

If U = u(1) ⊗ u(2) ⊗ · · · ⊗ u(N) and V = v(1) ⊗ v(2) ⊗ · · · ⊗ v(N) are two rank-1 tensors
then

〈U ,V〉F =
N∏

n=1

〈
u(n), v(n)

〉
,

where 〈·, ·〉 denotes the standard Euclidean inner product of two vectors. A conse-
quence of the above relation is that ‖U‖F is the product of the 2-norms of the vectors
u(n)’s.

2.4. Orthogonality of tensors. Two tensors A and B of the same size are
F-orthogonal (Frobenius orthogonal) if their inner product is zero, i.e.,

〈A,B〉F = 0.

For rank-1 tensors U = u(1) ⊗ u(2) ⊗ · · · ⊗ u(N) and V = v(1) ⊗ v(2) ⊗ · · · ⊗ v(N), the
above definition implies that they are F-orthogonal if

N∏
n=1

〈
u(n), v(n)

〉
= 0.

This leads to other options for defining orthogonality for two rank-1 tensors. The
paper [28] discussed two cases:

1. Complete orthogonality:
〈
u(n), v(n)

〉
= 0 for all n = 1, . . . , N .

2. Strong orthogonality: For all n, either
〈
u(n), v(n)

〉
= 0 or u(n) and v(n) are

collinear, but there is at least one ` such that
〈
u(`), v(`)

〉
= 0.

In this paper we will simply use the term orthogonal for two outer products that are
completely orthogonal (case 1).
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Fig. 2.1. A decomposition of an order-3 tensor A as B ×1 S(1) ×2 S(2) ×3 S(3).

2.5. Tensor decompositions. A decomposition of a tensor A ∈ Rd1×d2×···×dN

is of the form

A = B ×1 S(1) ×2 S(2) × · · · ×N S(N),

where B ∈ Rc1×c2×···×cN is called the core tensor, and S(n) ∈ Rdn×cn for n = 1, . . . , N
are called side-matrices. An illustration is given in Figure 2.1.

Let s
(n)
i be the i-th column of S(n). The decomposition of A can equivalently be

written as a linear combination of rank-1 tensors:

A =
cN∑

iN=1

· · ·
c1∑

i1=1

bi1,i2,...,iN
s
(1)
i1
⊗ s

(2)
i2
⊗ · · · ⊗ s

(N)
iN

. (2.2)

In particular, if B is diagonal, i.e., bi1,i2,...,iN
= 0 except when i1 = i2 = · · · = iN ,

then

A =
r∑

i=1

bii...is
(1)
i ⊗ s

(2)
i ⊗ · · · ⊗ s

(N)
i (2.3)

where r = min{c1, . . . , cN}.
In the literature, the term “decomposition” is often used when “approximation”

is meant instead. The Tucker3 decomposition is an approximation in the form of the
right-hand side of (2.2), for given dimensions c1, c2, . . . , cN . Usually, it is required
that cn is less than the rank of A(n) for all n, otherwise the problem is trivial. The
HOOI approach computes this approximation with an additional property that all
the S(n)’s are orthogonal matrices. The CANDECOMP/PARAFAC decomposition is
an approximation in the form of the right-hand side of (2.3), for a pre-specified r.
Usually, r is smaller than the smallest dimension of all modes of A, although requiring
a larger r is also possible in the ALS and other algorithms. As will be discussed in
the next section, the smallest r that satisfies equality (2.3) is the rank of the tensor
A.

3. Tensor ranks. The rank of a tensor causes difficulties when attempting to
generalize matrix properties to tensors. There are several possible generalizations of
the notion of rank. The n-rank of a tensor A ∈ Rd1×d2×···×dN , for n = 1, . . . , N ,
denoted by rankn(A), is the rank of the unfolding A(n):

rankn(A) := rank(A(n)).
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The (outer-product) rank of A, denoted by rank(A), is defined as

rank(A) := min
{

r
∣∣∣∃ x

(n)
i ∈ Rdn , i = 1, . . . , r, n = 1, . . . , N,

s.t. A =
r∑

i=1

x
(1)
i ⊗ x

(2)
i ⊗ · · · ⊗ x

(N)
i

}
.

Hence, a tensor is the outer product of N vectors if and only if it has rank one, and
the rank of a general tensor A is the minimum number of rank-1 tensors that sum to
A.

There are a few notable differences between the notion of rank for matrices and
that for tensors:

1. For N = 2, i.e., when A is a matrix, rank1(A) is the row rank, rank2(A)
is the column rank, and rank(A) is the outer-product rank, and they are all equal.
However, for higher order tensors (N > 2), in general, the n-ranks are different for
different modes n, and they are different from rank(A) [12]. Furthermore, the rank of
a matrix A can not be larger than the smallest dimension of both modes of A, but for
tensors this is no longer true, i.e., the rank can be larger than the smallest dimension
of the tensor [12].

2. The matrix SVD yields one possible way of writing a matrix as a sum of
outer-product terms, and the number of nonzero singular values is equal to the rank
of the matrix. However, a tensor SVD does not always exist (see Section 4), but if
it indeed does, it is unique up to signs [34, 43] and the number of singular values is
equal to the rank of the tensor (see Definition 4.1 and Proposition 4.2).

3. It is well-known that the optimal rank-r approximation of a matrix is simply
its truncated SVD. However some tensors may fail to have an optimal rank-r approx-
imation [17]. If such an approximation exists, it is unclear whether it can be written
in the form of a diagonal core multiplied by orthogonal side-matrices.

Next are some lemmas and a theorem related to tensor ranks, which were also
given in [17]. They are useful in deriving the results in Section 4. The first lemma
indicates that the rank of a tensor can not be smaller than any of its n-ranks:

Lemma 3.1. Let A ∈ Rd1×d2×···×dN be an order-N tensor. Then

rankn(A) ≤ min{rank(A), dn}, for n = 1, 2, . . . , N.

The next lemma illustrates a way to construct higher order tensors while preserv-
ing the rank.

Lemma 3.2. Let A be a tensor and x be a non-zero vector. Then

rank(A) = rank(A⊗ x).

The following lemma indicates that given any dimension d1 × d2 × · · · × dN , we
can construct a tensor of arbitrary rank R ≤ min{d1, d2, . . . , dN}.

Lemma 3.3. For n = 1, . . . , N , let x
(n)
1 , . . . , x

(n)
R ∈ Rdn be linearly independent.

Then the tensor

A =
R∑

i=1

x
(1)
i ⊗ x

(2)
i ⊗ · · · ⊗ x

(N)
i
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has rank R.
The next theorem is due to JáJá and Takche [23]. They showed that if A and

B are order-3 tensors and at least one of them is a “stack” of two matrices, then the
rank of their direct sum is equal to the sum of their ranks.

Theorem 3.4 (JáJá–Takche). Let A ∈ Rd1×d2×d3 and B ∈ Rc1×c2×c3 . If 2 ∈
{d1, d2, d3, c1, c2, c3}, then

rank(A⊕ B) = rank(A) + rank(B).

3.1. The ill-posedness of the optimal low rank approximation problem.
de Silva and Lim [17] proved that for any order N ≥ 3 and dimensions d1, . . . , dN ≥ 2,
there exists a rank-(r + 1) tensor that has no optimal rank-r approximation, for any
r = 2, . . . , min{d1, . . . , dN}. This result was further generalized to an arbitrary rank
gap, i.e., there exists a rank-(r + s) tensor that has no optimal rank-r approximation,
for some r’s and s’s.

Essentially, this ill-posedness of the optimal approximation problem is illustrated
by the fact that the tensor

E := e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2 ∈ R2×2×2,

where ei is the i-th column of the identity matrix, has rank 3 but can be approximated
arbitrarily closely by rank-at-most-2 tensors. Hence E does not have an optimal rank-
2 approximation. Then according to Theorem 3.4 and Lemma 3.2, the ill-posedness
of the problem can be generalized to arbitrary rank and order, by constructing higher
rank and higher order tensors using direct sums and tensor products. We restate one
of the results of [17] in the following theorem. For details of the proof, see the original
paper.

Theorem 3.5. For N ≥ 3 and d1, d2, . . . , dN ≥ 2, there exists a tensor A ∈
Rd1×d2×···×dN of rank r + s that has no optimal rank-r approximation, for any r and
s ≥ 1 satisfying 2s ≤ r ≤ min{d1, d2, . . . , dN}.

4. The tensor SVD and its (non-)existence. The definition used for the
singular value decomposition of a tensor generalizes the matrix SVD from the angle
of an expansion of outer product matrices, which becomes an expansion into a sum
of rank-1 tensors.

Definition 4.1. If a tensor A ∈ Rd1×d2×···×dN can be written in the form

A =
R∑

i=1

σiu
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(N)
i , (4.1)

where σ1 ≥ σ2 ≥ · · · ≥ σR > 0 and
〈
u

(n)
j , u

(n)
k

〉
= δjk (Kronecker delta) for n =

1, 2, . . . , N , then (4.1) is said to be the tensor singular value decomposition (tensor
SVD) of A. The σi’s are singular values and the u

(n)
i ’s for i = 1, . . . , R are the

mode-n singular vectors.
We also call (4.1) the SVD of tensor A for short where there is no ambiguity

about tensors and matrices. In fact, when N = 2, i.e., A is a matrix, the tensor SVD
of A boils down to the matrix SVD. Expression (4.1) can equivalently be written in
the form

A = D ×1 U (1) ×2 U (2) × · · · ×N U (N), (4.2)
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where D ∈ RR×R×···×R is the diagonal core tensor with Dii...i = σi, and

U (n) =
[
u

(n)
1 , u

(n)
2 , . . . , u

(n)
R

]
∈ Rdn×R (4.3)

are orthogonal matrices for n = 1, 2, . . . , N . The following proposition indicates that
the tensor SVD is rank revealing.

Proposition 4.2. If a tensor A has the SVD as (4.1), then rank(A) = R.
Proof. This follows from Lemma 3.3.
Trivially, if a tensor is constructed as in (4.1), its SVD exists. However, in general,

a tensor of order N ≥ 3 may fail to have such a decomposition. In this section, we
identify some of these situations.

To begin with, note that the orthogonality of each U (n) implies that R ≤ dn for
each n, i.e., R ≤ min{d1, d2, . . . , dN}. This leads to the following simple result.

Proposition 4.3. A tensor A ∈ Rd1×d2×···×dN with rank(A) > min{d1, d2, . . . , dN}
does not admit a tensor SVD.

Proof. The existence of a tensor SVD such as in (4.1) would trivially lead to a
contradiction since the tensor in (4.1) has rank R with R ≤ min{d1, d2 · · · , dN}.

Note that Theorem 3.5 guarantees that the condition of Proposition 4.3 is not
vacuously satisfied, for any order N ≥ 3 and dimensions d1, d2, . . . , dN ≥ 2.

Corollary 4.4. Given a tensor A satisfying the condition in Proposition 4.3,
any tensor of the form

A⊗ x(N+1) ⊗ · · · ⊗ x(N+`),

where ` ≥ 1 and x(N+1), . . . , x(N+`) are nonzero vectors, does not admit a tensor
SVD.

Proof. This follows from Proposition 4.3 and Lemma 3.2.
Corollary 4.5. A tensor A ∈ Rd1×d2×···×dN does not admit a tensor SVD if

there exists at least one mode n such that rankn(A) > min{d1, d2, . . . , dN}.
Proof. This follows from Proposition 4.3 and Lemma 3.1.
Proposition 4.6. There exists a tensor A ∈ Rd1×d2×···×dN which does not admit

a tensor SVD whenever

d := max
n
{dn} > min

n
{dn} and d2 ≤

N∏
n=1

dn.

Proof. Without loss of generality, assume that d = d1 ≥ d2 ≥ · · · ≥ dN and let
d′ = d2×· · ·×dN . Since d ≤ d′, for an arbitrary set of orthonormal vectors {ai ∈ Rd′ |
i = 1, . . . , d}, we can construct a tensor A whose unfolding A(1) = [a1, a2, . . . , ad]T .
Then rank1(A) = d. By Corollary 4.5, A does not admit a tensor SVD.

Note that when N = 2, i.e., for the matrix case, it is impossible for d1 and d2 to
satisfy the condition in the proposition.

In closing this section, we provide a necessary and sufficient condition to char-
acterize the existence of the tensor SVD.3 This is related to the HOSVD proposed
by [12]. The essential relation underlying the theorem is that the mode-n singular
vectors of A, when its SVD exists, are also the left singular vectors of the unfolding
A(n).

3As pointed out by a referee, the provided relation may have long been recognized in other fields
of research, such as signal processing, at least in the case of distinct singular values.
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Theorem 4.7. A tensor A admits an SVD if and only if there exists an HOSVD
of A such that the core is diagonal.

Proof. The sufficient condition is obvious. Consider the necessary condition. If
A can be written in the form (4.1), define the tensor

W(n)
i := u

(n+1)
i ⊗ · · · ⊗ u

(N)
i ⊗ u

(1)
i ⊗ · · · ⊗ u

(n−1)
i ,

and let w
(n)
i be the vectorization of W(n)

i . Then the unfolding of A along mode n is

A(n) =
R∑

i=1

σiu
(n)
i ⊗ w

(n)
i .

Since
〈
u

(n)
j , u

(n)
k

〉
= δjk for all n, we have

〈
w

(n)
j , w

(n)
k

〉
= δjk. Hence the above form

is the SVD of matrix A(n). In other words, the vectors u
(n)
1 , . . . , u

(n)
R are the left

singular vectors of A(n). From the construction of the HOSVD, Equation (4.2) is a
valid HOSVD for A.4

The proof of the above theorem indicates that if the SVD of a tensor A exists,
its singular values coincide with the nonzero mode-n singular values in its HOSVD.
However the HOSVD of a tensor may not be unique, since the SVD of the unfoldings
A(n)’s are not guaranteed to be unique. Hence even if a tensor is constructed as
in (4.1), its HOSVD will not necessarily recover this form. This is the reason why in
the above theorem we use the phase “. . . if there exists . . . ”.

It is interesting to note again that the non-uniqueness of matrix SVD is caused by
duplicate singular values, however the tensor SVD is unique (if it exists) even when
some of the singular values are the same [43, Theorem 3.2].

5. The optimal low rank orthogonal approximation. The problem ad-
dressed by tensor analysis is to approximate some tensor A by a linear combination
of tensors T1, T2, . . . , Tr that have “special” structures, e.g., rank-1 tensors, orthog-
onal tensors, or simple tensors5. For this it is desirable to minimize

∥∥∥∥∥A−
r∑

i=1

σiTi

∥∥∥∥∥
F

for a given r. Without loss of generality, we assume that ‖Ti‖F = 1 for all i. As
discussed in Section 3.1, if the Ti’s are rank-1 tensors, the infimum of the above
expression might not necessarily be attained. The following proposition reveals some
properties when the infimum is indeed achieved.

Proposition 5.1. Given a tensor A and a positive integer r, consider a set of
linear combinations of tensors of the form

T :=
r∑

i=1

σiTi (5.1)

where the Ti’s are arbitrary unit tensors. If inf ‖A − T ‖F is reached on this set, then
for the optimal T and Ti’s,

〈A − T , Ti〉F = 0 for i = 1, 2, . . . , r.

4In order to strictly conform to the definition of the HOSVD defined in [12], in (4.2) the size of
D should be enlarged from R×R× · · · ×R to d1 × d2 × · · · × dN by padding zeros, and the U(n)’s
should be padded with orthogonal columns to make square shapes.

5A tensor is simple if it is the tensor product of two tensors.
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Furthermore, if the Ti’s are required to be mutually F-orthogonal, then the optimal
σi’s are related to the optimal Ti’s by

σi = 〈A, Ti〉F for i = 1, 2, . . . , r. (5.2)

In this situation,

‖T ‖F =
√∑r

i=1σ
2
i . and ‖A − T ‖2F = ‖A‖2F − ‖T ‖2F . (5.3)

Proof. If the infimum is attained by a certain set of σi’s and Ti’s, and if there is
a j such that 〈A − T , Tj〉F = ε 6= 0, then

‖A −∑r
i=1σiTi − εTj‖2F

= ‖A −∑r
i=1σiTi‖2F − 2ε 〈A −∑r

i=1σiTi, Tj〉F + ε2 ‖Tj‖2F
= ‖A −∑r

i=1σiTi‖2F − ε2 < ‖A −∑r
i=1σiTi‖2F ,

which contradicts the assumption.
If the unit tensors Ti’s are mutually F-orthogonal, then

0 = 〈A −∑r
i=1σiTi, Tj〉F = 〈A, Tj〉F − σj 〈Tj , Tj〉F = 〈A, Tj〉F − σj .

Also,

‖T ‖2F = 〈T , T 〉F =
r∑

i,j=1

〈σiTi, σjTj〉F =
r∑

i=1

σ2
i ,

and
∥∥∥∥∥A−

r∑

i=1

σiTi

∥∥∥∥∥

2

F

= ‖A‖2F−
r∑

i=1

2σi 〈A, Ti〉F +
r∑

i=1

σ2
i = ‖A‖2F−

r∑

i=1

σ2
i = ‖A‖2F−‖T ‖2F .

The last part of the proof indicates that the equalities in (5.3) follow from the
orthogonality of the Ti’s and the relations (5.2). They do not require optimality.

In this section, we will see that if the Ti’s are mutually orthogonal rank-1 tensors,
then the infimum in the proposition can be attained. Formally, we will prove that the
problem

min E :=

∥∥∥∥∥A−
r∑

i=1

σiu
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(N)
i

∥∥∥∥∥
F

s.t.
〈
u

(n)
j , u

(n)
k

〉
= δjk, for n = 1, 2, . . . , N,

(5.4)

has a solution for any A ∈ Rd1×d2×···×dN and any r ≤ min{d1, d2, . . . , dN}. The
solution for the case r = min{d1, d2, . . . , dN} leads to a decomposition of A where the
diagonal of the core is maximized.
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5.1. Existence of the global optimum. Let

Ti := u
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(N)
i , for i = 1, . . . , r, (5.5)

and σi’s be defined as in (5.2), then according to Proposition 5.1 (see comments
following the proof),

E2 =

∥∥∥∥∥A−
r∑

i=1

σiTi

∥∥∥∥∥

2

F

= ‖A‖2F −
r∑

i=1

σ2
i .

Hence minimizing E is equivalent to maximizing
∑r

i=1 σ2
i , i.e., the optimization prob-

lem (5.4) is equivalent to the following:

max E′ :=
r∑

i=1

(
A×1 u

(1)
i

T ×2 u
(2)
i

T × · · · ×N u
(N)
i

T
)2

s.t.
〈
u

(n)
j , u

(n)
k

〉
= δjk, for n = 1, 2, . . . , N.

(5.6)

Let

U (n) =
[
u

(n)
1 , u

(n)
2 , . . . , u(n)

r

]
∈ Ω(n) (5.7)

where

Ω(n) := {W ∈ Rdn×r |WT W = I} (5.8)

for n = 1, 2, . . . , N . The problem (5.6) can be interpreted as that of maximizing E′

within the feasible region

Ω := Ω(1) × Ω(2) × · · · × Ω(N). (5.9)

Since for each n the set Ω(n) is compact (see, e.g., [22, p. 69]), by Tychonoff Theorem,
the feasible region Ω is compact. Under the continuous mapping E′, the image E′(Ω)
is also compact. Hence it has a maximum. This proves the following theorem:

Theorem 5.2. There exists a solution to the problem (5.6) (or equivalently (5.4)
with σi defined in (5.2)) for any r ≤ min{d1, d2, . . . , dN}.

5.2. Relation to tensor decompositions. Let U (n), n = 1, . . . , N be the
solution to the problem (5.4) with r = min{d1, d2, . . . , dN} and σi be defined in (5.2).
Also for n = 1, . . . , N , let U (n)⊥ be a dn×(dn−r) matrix such that the square matrix

Ũ (n) :=
[
U (n), U (n)⊥

]
∈ Rdn×dn (5.10)

is orthogonal. Further, define the tensor

S := A×1 Ũ (1)T ×2 Ũ (2)T × · · · ×N Ũ (N)T ∈ Rd1×d2×···×dN . (5.11)

Then the equality

A = S ×1 Ũ (1) ×2 Ũ (2) × · · · ×N Ũ (N) (5.12)

holds. This decomposition of A has the following two properties:
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(i) The side-matrices Ũ (n)’s are orthogonal.
(ii) The (squared) norm of the diagonal of the core S:
min{d1,...,dN}∑

i=1

s2
ii...i =

r∑

i=1

(
A×1 u

(1)
i

T ×2 u
(2)
i

T × · · · ×N u
(N)
i

T
)2

=
r∑

i=1

σ2
i

is maximized among all the choices of the orthogonal side-matrices. This is known as
maximal diagonality in [12].

5.3. First order condition. The Lagrangian of (5.6) is

L =
r∑

i=1

σ2
i −

r∑

j,k=1

N∑
n=1

µn
j,k

(〈
u

(n)
j , u

(n)
k

〉
− δjk

)
, (5.13)

where

σi = A×1 u
(1)
i

T ×2 u
(2)
i

T × · · · ×N u
(N)
i

T
(5.14)

and the µn
j,k’s are Lagrange multipliers. Define the vector

v
(n)
i := A×1 u

(1)
i

T × · · · ×n−1 u
(n−1)
i

T ×n+1 u
(n+1)
i

T × · · · ×N u
(N)
i

T

∈ R1×···×1×dn×1···×1.
(5.15)

(Here we abuse the use of notation “=”. More precisely, v
(n)
i should be the mode-n

unfolding of the tensor on the right-hand side of (5.15).) It is not hard to see that
〈
u

(n)
i , v

(n)
i

〉
= σi

for all n and i, and v
(n)
i is the partial derivative of σi with respect to u

(n)
i .

The partial derivative of the Lagrangian with respect to u
(n)
i is

∂L

∂u
(n)
i

= 2σiv
(n)
i −

r∑

j=1

µn
j,iu

(n)
j −

r∑

k=1

µn
i,ku

(n)
k ,

for any n and i. By setting the partial derivatives to 0 and putting all equations
related to the same n in matrix form, we obtain the following equations:

[
v
(n)
1 · · · v

(n)
r

]



σ1

. . .
σr


 =

[
u

(n)
1 · · · u

(n)
r

]



µn
1,1+µn

1,1
2 · · · µn

1,r+µn
r,1

2
...

. . .
...

µn
r,1+µn

1,r

2 · · · µn
r,r+µn

r,r

2


 ,

(5.16)
for all n = 1, 2, . . . , N . Let

V (n) :=
[
v
(n)
1 , v

(n)
2 , . . . , v(n)

r

]
, (5.17)

Σ := diag(σ1, . . . , σr), (5.18)

and let M (n) be the second term on the right-hand side of (5.16). Then (5.16) is
compactly represented as

V (n)Σ = U (n)M (n), n = 1, 2, . . . , N. (5.19)

In summary, the necessary condition of an extremum of the Lagrangian is the equa-
tion (5.19), where V (n) is defined in (5.17), Σ is defined in (5.18), U (n) is defined
in (5.7), and M (n) is symmetric, for all n = 1, 2, . . . , N .
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5.4. Algorithm: LROAT. We seek orthogonal matrices U (n)’s and symmetric
matrices M (n)’s which satisfy the system (5.19). (The Σ and V (n)’s are computed from
the U (n)’s.) Note that the pair U (n),M (n) happens to be the polar decomposition of
the matrix V (n)Σ. Hence the system can be solved in an iterative fashion: We begin
with an initial guess of the set of orthogonal matrices {U (1), U (2), . . . , U (N)}, which
can be obtained, say, by the HOSVD of A. For each n, we compute V (n) and Σ, and
update U (n) as an orthogonal polar factor of V (n)Σ. This procedure is iterated until
convergence is observed. Algorithm 1 (LROAT) summarizes this idea.

Algorithm 1 Low Rank Orthogonal Approximation of Tensors (LROAT)

Input: Tensor A, rank r, orthogonal matrices U (1), . . . , U (N) as initial guess
Output: σ1, . . . , σr, U (1), . . . , U (N)

1: repeat
2: for n← 1, . . . , N do
3: Compute V (n) =

[
v
(n)
1 , . . . , v

(n)
r

]
according to (5.15)

4: Compute Σ = diag(σ1, . . . , σr) according to (5.14)
5: [Q(n),H(n)]← polar-decomp(V (n)Σ)
6: Update U (n) ← Q(n)

7: end for
8: until convergence

Note that when r = 1, the matrix V (n) =
[
v
(n)
1

]
and U (n) =

[
u

(n)
1

]
, which means

that for each iteration u
(n)
1 is updated as the normalized v

(n)
1 . This indicates that

the LROAT algorithm for r = 1 boils down to the ALS method [43] (or the so-called
higher-order power method [13, 27]) for computing the optimal rank-1 approximation.
Hence, it is not unexpected to see in the numerical experiments that in general LROAT
converges linearly. We also comment that LROAT is not an alternating least squares
method (except for the case r = 1) by the nature of the update of U (n).

5.5. Convergence analysis. LROAT employs an alternating procedure (iter-
ating through U (1), U (2), . . . , U (N)), where in each step all but one (U (n)) parameters
are fixed. In general, algorithms of this type, including alternating least squares, are
not guaranteed to converge. Specifically, the objective function may converge but not
the parameters. (See, for example, [32] for some discussions.) For LROAT, we are
also unable yet to prove the global convergence, though empirically it appears to hold.
However, in this section, we will prove that: (1) The iterations monotonically increase
the objective value E′ (Theorem 5.4); (2) Under a mild condition, of the generated
parameter sequence, every converging subsequence converges to a stationary point of
the objective function (Theorem 5.7); and (3) In a neighborhood of a local maximum,
the parameter sequence converges to this stationary point (Theorem 5.9).

Before analyzing the convergence behavior of LROAT, we index all the iterates.
The outer-loop is indexed by p and the overall iterations are indexed by idx, which
is equal to n + (p − 1)N . In other words, Algorithm 1 is rewritten as follows. In
particular, the numbered lines correspond to the lines in Algorithm 1.

for p← 1, 2, . . . do
for n← 1, . . . , N do

idx = n + (p− 1)N
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For all i, compute σ
(idx)
i according to U

(1)
(p+1), . . . , U

(n−1)
(p+1) , U

(n)
(p) , U

(n+1)
(p) , . . . , U

(N)
(p)

Objective E′(idx) =
∑r

i=1

(
σ

(idx)
i

)2

3: Compute V
(n)
(p) from U

(1)
(p+1), . . . , U

(n−1)
(p+1) , U

(n+1)
(p) , . . . , U

(N)
(p)

4: Assign Σ(idx) = diag
(
σ

(idx)
1 , . . . , σ

(idx)
r

)

5: Polar decomposition V
(n)
(p) Σ(idx) = Q

(n)
(p)H

(n)
(p)

6: Update U
(n)
(p+1) = Q

(n)
(p)

end for
end for

The following lemma, which is well-known when the matrix A is square, reveals the
trace maximizing property that is important for the convergence analysis of LROAT.

Lemma 5.3. Let matrix A ∈ Rm×n, m ≥ n, have the polar decomposition A =
QH where Q ∈ Rm×n is the orthogonal polar factor and H ∈ Rn×n is the symmetric
positive semi-definite factor, then

max
P∈Rm×n, P T P=I

tr(PT A)

is attained when P = Q.
Proof. Any P can be written as ZQ, where Z ∈ Rm×m is orthogonal. Then

tr(PT A) = tr(QT ZT QH) = tr(ZT QHQT ).

Since QHQT is symmetric positive semi-definite, max tr(ZT QHQT ) is attained when
Z = I.

Since U
(n)
(p+1) is the orthogonal polar factor of V

(n)
(p) Σ(idx), by Lemma 5.3,

r∑

i=1

(
σ

(idx)
i

)2

= tr
(

U
(n)
(p)

T
V

(n)
(p) Σ(idx)

)
≤ tr

(
U

(n)
(p+1)

T
V

(n)
(p) Σ(idx)

)
=

r∑

i=1

σ
(idx+1)
i σ

(idx)
i .

Then by the Cauchy-Schwarz inequality,

r∑

i=1

(
σ

(idx)
i

)2

≤
r∑

i=1

σ
(idx+1)
i σ

(idx)
i ≤

r∑

i=1

(
σ

(idx+1)
i

)2

, (5.20)

and
r∑

i=1

(
σ

(idx)
i

)2

=
r∑

i=1

(
σ

(idx+1)
i

)2

iff σ
(idx)
i = σ

(idx+1)
i for all i. (5.21)

Inequality (5.20) means that each update of U (n) increases the value of the objective
function E′, i.e.,

E′(idx) ≤ E′(idx+1).

Since E′ is bounded from above (existence of the maximum, see Theorem 5.2), the
sequence {E′(idx)}∞idx=1 converges. Note that the convergence does not depend on
the initial guess input to the algorithm. Formally, we have established the following
theorem:
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Theorem 5.4. Given any initial guess, the iterations of Algorithm 1 monotoni-
cally increase the objective function E′ defined in (5.6) to a limit.

The convergence of the objective function does not necessarily imply that the
function parameters will converge. However, in our case since the parameters U (n)’s
are bounded, they admit converging subsequences. Next we will show that every such
subsequence converges to a stationary point of E′. For this, the following lemma uses
a helper function f .

Lemma 5.5. Let T : Θ → Θ be a continuous mapping and a sequence {θn ∈
Θ}∞n=1 be generated from the fixed point iteration θn+1 = T (θn). If there exists a
continuous function f : Θ→ R satisfying the following two conditions:

(i) The sequence {f(θn)}∞n=1 converges;
(ii) For θ ∈ Θ, if f(T (θ)) = f(θ) then T (θ) = θ;

then every converging subsequence of {θn}∞n=1 converges to a fixed point of T .
Proof. Let {θsn

}∞n=1 be a converging subsequence of {θn}∞n=1, where θsn
→ θ∗.

Also let f∗ be the limit of f(θn). Then f(θsn
) → f(θ∗), therefore f(θ∗) = f∗.

Meanwhile from the continuity of T and f , we have T (θsn
)→ T (θ∗) and f(θsn+1) =

f(T (θsn))→ f(T (θ∗)), which implies that f(T (θ∗)) = f∗. Condition (ii) of the lemma
now implies that θ∗ = T (θ∗).

Our objective function E′ is just one such helper function f , and the orthogonal
polar factor function plays the role of the mapping T in the above lemma. The follow-
ing lemma establishes the fact that the orthogonal polar factor function is continuous.

Lemma 5.6. The orthogonal polar factor function g : A → Q defined on the set
of matrices with full column rank is continuous. Here Q is the orthogonal polar factor
of A ∈ Rm×n, m ≥ n.

Proof. First, function g is well defined, since the orthogonal polar factor of a full
rank matrix exists and is unique [21]. If Q and Q′ are the orthogonal polar factors of
A and A′, respectively, Sun and Chen [39] have shown that

‖Q−Q′‖F ≤
2

‖A+‖2
‖A−A′‖F ,

where + means pseudo inverse. Hence if A1, A2, . . . converges to A∗, then g(A1),
g(A2), . . . converges to g(A∗).

Now we are ready to prove the following result.
Theorem 5.7. Every converging subsequence of

{
U

(1)
(p) , . . . , U

(N)
(p)

}∞
p=1

generated

by Algorithm 1 converges to a stationary point of the objective function E′ defined
in (5.6), provided the matrices V (n) in line 3 of the algorithm do not become rank-
deficient throughout the iterations.

Proof. For convenience, let U denote the side-by-side concatenation of the U (n)’s,
i.e., at iteration number p we write U(p) :=

[
U

(1)
(p) , . . . , U

(N)
(p)

]
. For each iteration,

V
(n)
(p) Σ(idx) is computed from U(p) and polar factorized, and U

(n)
(p) is updated. Let T

be the composite of all these iterations running n from 1 to N . That is, U(p+1) =
T (U(p)). It is not hard to see that T is continuous by Lemma 5.6. The objective
function E′ taking parameter U(p) has been previously shown such that the sequence
{E′(U(p))}∞p=1 is monotonically converging.

Hence by Lemma 5.5, in order to prove this theorem, it will suffice to show
that E′(T (U)) = E′(U) implies T (U) = U . Then every converging subsequence
of {E′(U(p))}∞p=1 converges to a fixed point, which satisfies the first order condi-
tion (5.19), i.e., it is also a stationary point of E′.
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If E′(T (U)) = E′(U), formula (5.21) indicates that the σi values have not changed
after the iteration. In particular, for any n, the update of U (n) has not changed
tr

(
U (n)T

V (n)Σ
)
. Since the orthogonal polar factor of V (n)Σ is unique when V (n) is

not rank-deficient, this means that U (n) has not changed. This in turn means that U
is a fixed point of the mapping T .

The condition in the theorem is not a strong requirement in general. Of course, the
columns v

(n)
i of the matrix V (n), as computed from (5.15), will be linearly dependent

if the n-rank of A is less than r. For practical applications, the tensor usually has full
n-ranks for all n, so this does not hamper the applicability of the theorem.

Though the global convergence of {U(p)} is not determined, when localized, it is
possible that this parameter sequence converges. The following lemma and theorems
consider this situation.

Lemma 5.8. If a sequence {θn}∞n=1 is bounded, and all of its converging subse-
quences converge to θ∗, then θn → θ∗.

Proof. (By contradiction.) If {θn}∞n=1 does not converge to θ∗, then there is an
ε > 0 such that there exists a subsequence S = {θsn}∞n=1, where ‖θsn − θ∗‖ ≥ ε for all
n. Since S is bounded, it has a converging subsequence S′. Then S′ as a subsequence
of {θn}∞n=1 converges to a limit other than θ∗.

Theorem 5.9. Let U∗ =
[
U

(1)
∗ , . . . , U

(N)
∗

]
be a local maximum of the objective

function E′ defined in (5.6). If the sequence
{

U(p) :=
[
U

(1)
(p) , . . . , U

(N)
(p)

]}∞
p=1

generated

by Algorithm 1 lies in a neighborhood of U∗, where U∗ is the only stationary point in
that neighborhood, and if the full rank requirement in Theorem 5.7 is satisfied, then
the sequence {U(p)}∞p=1 converges to U∗.

Proof. This immediately follows from Theorem 5.7 and Lemma 5.8.
Note that since the starting elements of a sequence have no effect on its conver-

gence behavior, the above theorem holds whenever the tailing subsequence, starting
from a sufficiently large p, lies within the neighborhood.

A weaker, but simpler, result is the following corollary.
Corollary 5.10. Let U∗ =

[
U

(1)
∗ , . . . , U

(N)
∗

]
be a local maximum of the objective

function E′ defined in (5.6). If this local maximum is unique and if the full rank re-

quirement in Theorem 5.7 is satisfied, then the sequence
{

U(p) :=
[
U

(1)
(p) , . . . , U

(N)
(p)

]}∞
p=1

generated by Algorithm 1 converges to U∗.

5.6. LROAT for symmetric tensors. An order-N tensor A ∈ Rd×d×···×d,
whose dimensions of all modes are the same, is symmetric if for all permutations π,

ai1,i2,...,iN = aiπ(1),iπ(2),...,iπ(N) .

For symmetric tensors, usually the approximation problem (5.4) has an addi-
tional constraint that the side-matrices U (n)’s are the same for all n, i.e., the problem
becomes

min E =

∥∥∥∥∥A−
r∑

i=1

σiui ⊗ ui ⊗ · · · ⊗ ui

∥∥∥∥∥
F

s.t. 〈uj , uk〉 = δjk.

(5.22)

Applying similar arguments to those in Section 5.1, it is easily seen that (5.22) is



TENSOR SVD AND LOW RANK ORTHOGONAL APPROXIMATION 17

equivalent to the following problem:

max E′ =
r∑

i=1

(A×1 uT
i ×2 uT

i × · · · ×N uT
i

)2

s.t. 〈uj , uk〉 = δjk.

(5.23)

The supremum of E′ can be attained. Further, the “maximal-diagonality” decom-
position of A (c.f. Equation (5.12)) has an additional property that the core S is
symmetric. Also, the first order condition (5.19) is simplified to

V Σ = UM.

Hence, there are two approaches to compute the approximation for the symmet-
ric tensor A. The first approach is to directly apply LROAT on A. Theorems in
the above section guarantee the convergence under mild assumptions, but the side-
matrices might no longer be the same, though in the next section an experiment
indicates that they indeed converge to the same matrix. The second approach is to
only use a single initial guess U and omit the for-loop on n (line 2 of Algorithm 1). We
call this the symmetric variant of LROAT. In this case Theorem 5.4 no longer holds,
i.e., the iterations might not monotonically increase the objective value E′ defined
in (5.23), since the for-loop on n is omitted. An experiment in the next section shows
an oscillating phenomenon, which is similar to the one indicated in Figure 4.1 of [27],
for the objective value E′.

6. Numerical experiments. This section will show a few experiments to il-
lustrate the convergence behavior and the approximation quality of LROAT. For
comparisons are the ALS methods for Tucker and PARAFAC, whose implementa-
tions are based on the codes from the MATLAB Tensor Toolbox developed by Bader
and Kolda [2]. We use the major left singular vectors of the unfoldings as the initial
guess input for all the algorithms compared. When it comes to the quality of the final
approximation, experience shows that compared with random orthonormal vectors,
singular vectors as initial guesses do not offer any advantage. It has been argued
that running the algorithms several times using different sets of random initial guess
enhances the probability of hitting the global optimum. We use singular vectors here
only for repeatability.

6.1. Convergence of LROAT. In the first experiment, we test LROAT (and
the symmetric variant of LROAT mentioned in Section 5.6) on a few tensors listed
in Table 6.1. The results are shown in Figures 6.1 and 6.2. Each row of the figures
is one test on a tensor. The left plot shows the objective value E′ (the same as the
norm of the approximated tensor T ) for each iteration p, while the right plot shows
the convergence history of the U (n)’s. Since the optima are unknown, we plot the
values

∥∥∥U
(n)
(p) − U

(n)
(p−1)

∥∥∥
F

to indicate the convergence of the sequence
{

U
(n)
(p)

}
p=1,2,...

.

Since these values are plotted on logarithimic scale, if the curves are bounded from
above by a straight decreasing line, then it is indicated that the convergence of the
sequence is at least linear.

Figures 6.1 and 6.2 show in a total five tests. The first test (Figure 6.1(a)) uses a
randomly generated tensor A1. The second test (Figure 6.1(b)) uses a low-rank-plus-
Gaussian-noise tensor

A2 = B1 + ρB2,
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Table 6.1
The tensors used for the first experiment. The value r is the rank input to LROAT; it is not

the rank of the tensor.

Tensor Dimensions r Notes
A1 20× 16× 10× 32 5 random tensor
A2 20× 16× 10× 32 5 rank-5 tensor + Gaussian noise
A3 10× 10× 10 5 the (i, j, k)-entry = 1/(i2 + j2 + k2)
A4 3× 3× 3× 3 2 see [27, Example 1]

where the low rank tensor B1 is in the form (2.3) with r = 5, the Gaussian noise tensor
B2 has normally distributed elements, and ρ = 0.1 ‖B1‖F / ‖B2‖F . In these two tests
the two tensors are applied to the LROAT algorithm. The third test (Figure 6.1(c))
uses a symmetric tensor A3 with entries

(A3)ijk =
1

i2 + j2 + k2
.

In this test A3 is applied to the symmetric variant of LROAT. All the three tests show
a linear convergence rate. The fourth (Figure 6.2(a)) and the fifth (Figure 6.2(b)) test
use a symmetric tensor A4 introduced in [27, Example 1]:

(A4)1111 = 0.2883, (A4)1112 = −0.0031, (A4)1113 = 0.1973,

(A4)1112 = −0.2485, (A4)1123 = −0.2939, (A4)1133 = 0.3847,

(A4)1222 = 0.2972, (A4)1223 = 0.1862, (A4)1233 = 0.0919,

(A4)1333 = −0.3619, (A4)2222 = 0.1241, (A4)2223 = −0.3420,

(A4)2233 = 0.2127, (A4)2333 = 0.2727, (A4)3333 = −0.3054.

In [27], the symmetric higher-order power method for computing the optimal rank-1
approximation of A4 is shown to be non-converging. We experiment with this tensor
with r = 2 on LROAT and the symmetric variant of LROAT. Figure 6.2(a) shows
that when applied to LROAT, the approximation to A4 indeed linearly converges, and
what’s more, all the side-matrices converge to the same result. The approximation
computed by LROAT is

A4 ≈ σ1u
(1) ⊗ u(1) ⊗ u(1) ⊗ u(1) + σ2u

(2) ⊗ u(2) ⊗ u(2) ⊗ u(2)

with

σ1 = −1.0939, u(1) =
[−0.5946 0.7503 0.2890

]T
,

σ2 = −0.55594, u(2) =
[
0.1947 −0.2144 0.9572

]T
.

On the other hand, Figure 6.2(b) shows that the symmetric variant of LROAT fails
to converge.

6.2. Low rank orthogonal approximation compared with Tucker and
PARAFAC. In the second experiment, we compare the approximation quality of
three different models: Low rank orthogonal approximation (without confusion in
this section, we call this model “LROAT”, which happens to be the name of the
algorithm, for short), Tucker and PARAFAC. See Figure 6.3. We experiment with
two tensors: a low-rank-plus-Gaussian-noise tensor which is generated the same way
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as A2 and a real-life tensor. The latter is obtained from a problem in acoustics [20],
and the data can be downloaded from [16]. The residual norms

res(p) :=

∥∥A− T(p)

∥∥
F

‖A‖F
over all the iterations p are plotted.

Figure 6.3 indicates three facts: (1) The three models approximate the data tensor
well to some extent (less than 35% of the information is lost due to approximation);
(2) PARAFAC is usually slow to converge; (3) The residual norm for LROAT is larger
than those of Tucker and PARAFAC. The last fact is not unexpected since LROAT
can be considered a special case of Tucker and of PARAFAC: The Tucker model has a
full core while the core for LROAT is diagonal, and unlike LROAT the side-matrices
in the PARAFAC model are not restricted to be orthogonal.

6.3. An application. In the blind source separation (BSS) problem [5], the
cumulant tensor of order 4 is a rank-R tensor:

R∑

i=1

σiui ⊗ ui ⊗ ui ⊗ ui, (6.1)

where R is the number of sources and ui is the i-th column of the mixing matrix.
In the prewhitening approach for the BSS problem, the ui’s become the columns of
the composite of the whitening matrix and the mixing matrix, that is, the ui’s are
length-R vectors and are orthonormal. Hence, this prewhitening approach reduces
to computing the tensor SVD of the cumulant tensor. Since in practice this tensor
is estimated from a finite data set, it is not exact. Thus, the low rank orthogonal
approximation becomes a suitable tool to recover the ui’s.

In an experiment, we let R = 3 and generate a data tensor

A5 = B3 + ρB4

where B3 is as (6.1), B4 is a symmetric tensor with normally distributed elements,
and ρ = 0.05 ‖B3‖F / ‖B4‖F . The σi’s are

σ1 = 0.7942, σ2 = 0.5678, σ3 = 0.4611,

and the ui’s are

U = [u1, u2, u3] =




0.0974 0.4049 0.9092
0.9918 −0.1154 −0.0548
0.0827 0.9071 −0.4128


 .

We use four methods to compute the rank-R (or rank-(R,R, R)) approximations to
A5: LROAT, incremental rank-1 approximation, PARAFAC, and Tucker. All the
four methods return same side-matrices for all modes. They are:

ULROAT =




0.0937 0.3822 0.9193
0.9918 −0.1164 −0.0527
0.0869 0.9167 −0.3899


 , Uinc =




0.0841 0.3795 0.9162
0.9929 −0.1282 −0.0745
0.0846 0.9163 −0.3938


 ,

UPARAFAC =




0.0841 0.3795 0.9162
0.9929 −0.1282 −0.0745
0.0846 0.9163 −0.3938


 , UTucker =




0.0627 0.3707 0.9266
0.9952 −0.0937 −0.0298
0.0758 0.9240 −0.3748


 .

Observations are as follows:
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1. The Uinc and UPARAFAC are not orthogonal.
2. Compared with Tucker, LROAT gives better approximations to the vectors

ui’s:

‖U − ULROAT‖ = 0.0252, ‖U − UTucker‖ = 0.0527.

3. In terms of approximation quality, the residual norms (in percentage of the
norm of A5), are

resLROAT = 3.07%, resinc = 1.36%, resPARAFAC = 1.36%, resTucker = 0%.

7. Concluding remarks. In the present paper we studied the tensor SVD, and
characterized its existence in relation to the HOSVD. Similar to the concept of rank,
the SVD of higher order tensors exhibits a quite different behavior and characteristics
from those of matrices. Thus, the SVD of a matrix is guaranteed to exist, though
it may have different representations due to orthogonal transformations of singular
vectors corresponding to the same singular value. On the other hand, there are many
ways in which a tensor can fail to have an SVD (see the results in Section 4), but
when it exists, this decomposition is unique up to signs.

We have also discussed a new form of optimal low rank approximation of tensors,
where orthogonality is required. This approximation is inspired by the constraints
of the Tucker model and the PARAFAC model. In some applications, the proposed
approximation model may be favored, since it results in N sets of orthonormal vectors
or, equivalently, r mutually orthogonal unit rank-1 tensors with different weights.
Among the advantages of this approximation over the Tucker model is the fact that it
requires far fewer entries to represent the core, and that it is easier to interpret.
Also, compared with the PARAFAC model, the orthogonality of vectors may be
useful in some cases. Further, the LROAT algorithm for computing the proposed
approximation does not seem to exhibit the well-known slow convergence from which
the ALS algorithm for PARAFAC suffers.

A major restriction of the proposed model is that the number of terms r can
not exceed the smallest dimension of all modes of the tensor. A consequence is that
the approximation may still be very different from the original tensor even when the
maximum r is employed. However we note that when performing data analysis, the
interpretation of the vectors and the core tensor might be more important than how
much is lost when the data is approximated.

A nice aspect of the proposed approximation is that the optimum of the objective
function can theoretically be attained, in contrast to the PARAFAC model which
is ill-posed in a strict mathematical sense. We presented an algorithm to compute
this approximation, but the computed result is only optimal in a local neighborhood.
It will be interesting to study for what tensors or what initial guesses the LROAT
algorithm converges to the global optimum, or to devise a new algorithm to solve this
optimization problem. It is an open problem how fast LROAT converges, although
empirically convergence is observed to be linear. We also discussed the symmetric
variant of LROAT and pointed out the possibility of its non-convergence. Hence the
convergence properties of this variant, and the observed phenomenon that the original
LROAT algorithm can yield same side-matrices for symmetric tensors, remain to be
investigated.

Appendix. Does the ALS algorithm for PARAFAC converge? It has
been pointed out that the ALS algorithm for computing the PARAFAC model may
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converge very slowly due to degenerate solutions or multicollinearities, and many
alternatives have been proposed to address this problem [36, 37, 26]. During iterations,
the objective value monotonically decreases by the nature of the alternating least
squares procedure, and since the sequence is bounded, it converges. However, a proof
of the convergence of the parallel factors is lacking. In general it is assumed that these
factors converge, but may take a very large number of iterations. In this section, we
discuss an experiment showing that the general concept of convergence is unclear in
this context. Though only one example is given, we note that the exhibited behavior
is not rare for randomly generated tensors. (On the other hand it may be argued that
tensors in real applications are far from being filled with random entries.)

We generate an order-3 tensor A ∈ R3×3×3 and run the ALS algorithm on r = 2,
i.e., to compute the approximation

A ≈ λ1u
(1)
1 ⊗ u

(2)
1 ⊗ u

(3)
1 + λ2u

(1)
2 ⊗ u

(2)
2 ⊗ u

(3)
2 .

The Matlab code which generates the tensor A is as follows:

A(:,:,1) = [.99 .29 .08; .44 .69 .19; .00 .49 .97];
A(:,:,2) = [.36 .64 .10; .13 .73 .89; .01 .02 .76];
A(:,:,3) = [.58 .55 .98; .68 .77 .04; .96 .61 .98];

We use u
(n)
i = ei, where n = 1, 2, 3 and ei is the i-th column of the identity matrix,

as the initial guess.
Denote U (n) =

[
u

(n)
1 , u

(n)
2

]
for n = 1, 2, 3. Two plots are shown after running 105

iterations (see Figure A.1). Figure A.1(a) shows the “convergence” history for each
U (n). The curves represent

∥∥∥U
(n)
(p) − U

(n)
(p−1)

∥∥∥, where p is the index of the iterations.
A necessary condition for convergence to occur is that all the three curves decrease
to zero. However we see from the figure that this may not be the case. To test the
conjecture that each of the curves tends to a nonzero value, we use the following
expression

log10 y =
a

(10−4x)1/α
+ b

to fit the tailing part of the curves (starting from the 2× 104-th iteration). Table A.1
gives the fitting results for different α’s. When the number of iterations tends to
infinity, the value 10b will show the limit of the differences between two consecutive
U (n)’s.

It is still difficult to conclude for this example that the iterations do not converge
since rounding has not been taken into account. However, it makes no practical differ-
ence for this case whether the sequence actually converges or whether it is exceedingly
slow to converge. The result, if convergence holds, will be an inordinate number of
iterations to reach a desirable level of convergence, and the cost will be too high in
practice. This can be made evident by examining Figure A.1(b), which plots the
parallel factor u

(1)
2 over all iterations: The 3rd entry of u

(1)
2 decreases from 0.2540 at

the 5× 104-th iteration to 0.2517 at the 105-th iteration.
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Table A.1
Curve fitting for the three curves in Figure A.1(a) using different α values. The error is

measured as the quadratic mean of fitting errors in logarithmic scales, i.e., the RMS of | log10 y −
log10 yfit|. It will be easier to understand this error by noticing that the vertical axis of Figure A.1(a)
has a length 8 (after taking logarithm).
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(a) Tensor A1: Randomly generated.
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(b) Tensor A2: Low rank plus Gaussian noise.
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(c) Tensor A3: (A3)ijk = 1/(i2 + j2 + k2).

Fig. 6.1. Experiment 1: Convergence tests for LROAT.
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(a) Tensor A4 directly applied to LROAT.
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(b) Tensor A4 applied to the symmetric variant of LROAT.

Fig. 6.2. Experiment 1 (continued): Convergence tests for LROAT.
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(a) Low-rank-plus-Gaussian-noise tensor.
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(b) Real-life tensor.

Fig. 6.3. Experiment 2: Comparison of LROAT, Tucker and PARAFAC.
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Fig. A.1. Slow convergence or non-convergence of ALS for PARAFAC.


